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Abstract 

The Connection Machine Model CM-5 Supercomputer is a massively parallel computer system designed to offer performance in 
the range of 1 teraflops (1012 floating-point operations per second). The CM-5 obtains its high performance while offering ease 
of programming, flexibility, and reliability. The machine contains three communication networks: a data network, a control 
network, and a diagnostic network. This paper describes the organization of these three networks and how they contribute to 
the design goals of the CM-5. 

1 Introduction 

In the design of a parallel computer, the engineering principle of economy of mechanism suggests that the machine 
should employ only a single communication network to convey information among the processors in the system. 
Indeed, many parallel computers contain only a single network: typically, a hypercube or a mesh. The Connection 
Machine Model CM-5 Supercomputer has three networks, however, and none is a hypercube or a mesh. This paper 
describes the architecture of each of these three networks and the rationale behind them. 

Figure 1 shows a diagram of the the CM-5 organization. The machine contains between 32 and 16,384 processing 
nodes, each of which contains a 32-megahertz SPARC processor, 32 megabytes of memory, and a 128-megaflops 
vector-processing unit capable of processing 64-bit floating-point and integer numbers. System administration tasks 
and serial user taskJ are executed by a collection of control processors, which are Sun Microsystems workstation 
computers. There are from 1 to several tens of control processors in a CM-5, each configured with memory and disk 
according to the customer's preference. Input and output is provided via high-bandwidth I/O interfaces to graphics 
devices, mass secondary storage, and high-performance networks. Additional low-speed I/O is provided by Ethernet 
connections to the control processors. The largest machine, configured with up to 16,384 processing nodes, occupies 
a space of approximately 30 meters by 30 meters, and is capable of over a teraflops (1012 floating-point operations 
per second). 

The processing nodes, control processors, and I/O interfaces are interconnected by three networks: a data net­
work, a control network, and a diagnostic network. The data network provides high-performance point-to-point 
data communications between system components. The control network provides cooperative operations, including 
broadcast, synchronization, and scans (parallel prefix and suffix). It also provides system management operations, 
such as error reporting. The diagnostic network allows "back-door" access to all system hardware to test system 
integrity and to detect and isolate errors. 

The system operates as Qne or more user partitions. Each partition consists of a control processor, a collection of 
processing nodes, and dedicated portions of the data and control networks. Access to system functions is classified 
as either privileged or nonprivileged. All nonprivileged system functions, including access to the data and control 
networks, can be executed directly by user code without system calls. Consequently, network communication within 
a user task occurs without operating system overhead. Access to the diagnostics network, to shared system resources 
(such as I/O), and to other partitions is privileged and must be accomplished via system calls. Protection and 
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Figure 1: The organization of the Connection Machine CM-5. The machine has three networks: a data network, a control network, 
and a diagnostic network. The data and control networks are connected to processing nodes, control processors, and I/O channels via a 
network interface. 

addressing mechanisms ensure that no user can interfere with the function or performance of another user in another 
partition. If the system administrator so desires, a single partition can be timesharedamong a group of users, where 
each user gets a fair portion of the available time and cannot otherwise be interfered with by any other user. 

Further details about the CM-5 system can be found in the CM-5 Technical Summary [24]. 
When we first set about designing the CM-5, we established engineering goals that went beyond mere performance 

specifications. We thought hard about issues of scalability: making a machine whose size would be limited only by 
the dollars a customer could spend, not by any architectural or engineering constraint. We thought hard about 
system issues, including timesharing, I/O, and user protection. We thought hard about reliability, since we were 
designing a machine which, in its largest configuration, would have well over 10 times the electronics of our previous 
supercomputer, the Connection Machine Model CM-2 Supercomputer. 

The following goals drove our network designs: 

• The networks must deliver high performance to the users. We wanted the users to be easily able to program the 
networks to get good performance. We did not want to force the users to worry constantly about pathological 
worst cases, and we wanted the best cases to run well without the user needing to do anything special. 

• The networks must scale up to a very large size. We wanted the logical design of the networks to scale up to a 
million processing nodes. We wanted to build SUPERcomputers. 

• The networks should efficiently support the data-parallel programming model (see Section 5), but should be flexible 
enough to allow us to support other parallel programming models as well. The data-parallel programming model 
was used extensively on the CM-2, and we wanted to be able to transport our existing high-level programming 
environments (Fortran90, *Lisp, and C*) to the CM-5. We also wanted to be able to run codes written for other 
machines competitively. 

• The networks must be highly reliable and highly available. The system must notice whenever part of a network 
fails, be able to isolate the failure quickly, and be able to quickly reconfigure the networks around the failure. It 
was desired that even if part of a network has failed, the rest of the network should be able to function correctly 
with only a small degradation in performance. 

• The networks must work in a spaceshared environment. We wanted a user's network traffic to be insulated from 
other users and I/O in other partitions. 

• The networks must work in a timeshared environment. A timeshared user must get a fair share of network 
bandwidth. Users must be able to be context-swapped quickly. Privileged system software must be able to seize 
control of a user's task. . 

• The networks must be operational as soon as possible. Time to market was of the essence. Chips and systems 
needed to work the first time. We wanted the networks to be simple enough to engineer quickly, robust enough to 
respond to last-minute design changes, and easily verifiable. Consequently, we opted for conservative technology, 
for example, copper wires rather than optical fibers. We chose to use CMOS in order to minimize the risk 
associated with new technology. We chose standard-cell technology in order to be able to make extensive use 
of the wide variety of available design tools (such as timing verifiers and automatic test generators). To achieve 
high performance with this conservative technology, we incorporated custom macro cells for circuits on the critical 
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path. Our attitude was that there was more performance to be gained by architectural improvements than by 
eking out extra nanoseconds in technology. Conservative technologies, with their well-developed computer-aided 
design tools, would allow us to make many more architectural improvements during the design . 

• The chips used to build the networks must be organized in a way to allow technological or architectural improve­
ments to be easily incorporated in subsequent revisions of the CM-5 system. On the CM-2, both processors and 
communication were implemented on the same chip, which made it difficult to incorporate advanced technology 
in one area without impacting the other. We wanted to be able to incorporate any advances without having to 
reengineer a major piece of the system. 

• The networks should embody both economy of mechanism and single-minded functionality. We wanted the net­
works to be lean and mean: Whenever anyone suggested anything complicated, we viewed it with suspicion. For 
example, the job of the data network is to deliver messages, nothing else. But it delivers both user messages and 
messages to I/O devices using the same mechanisms. The data network does not combine messages, duplicate 
messages, or acknowledge delivery of messages. It just focuses on moving data as fast as possible. 

We ended up designing two networks visible to the user and a network interface that provides an abstract view 
of them. We also designed a diagnostic network to provide "back-door" access to the system. This paper describes 
the three networks, the network interface, and how we engineered them to meet our goals. The reader should be 
aware that the performance specifications quoted in this paper apply only to the initial release of the CM-5 system. 
Because of our ability to reengineer pieces of the system easily, these numbers represent only a snapshot of an evolving 
implementation of the architecture. 

The remainder of this paper is organized as follows. To begin, Section 2 describes the network interface which 
provides the user's view of the data and control networks. Section 3 then describes the data network. A justification 
for having both a data and control network is provided in Section 4. The control network is then described in 
Section 5, and Section 6 describes the diagnostic network. The paper closes with Section, 7, which gives a short 
history of our development project. 

2 The CM-5 Network Interface 

Early on in the design of the CM-5, we decided to specify an interface between the processing nodes and the 
networks that isolates each from the details of the other. This interface provides three features. First, the interface 
gives the processors a simple and uniform vie.v of the networks (and the networks get a simple and uniform view of 
the processors). Second, the interface provides support for time-sharing, space-sharing, and mapping out of failed 
components. Third, the interface provides a contract for the implementors which decouples the design decisions 
made for the networks from those of the processors. 

The processor's view of the interface is as a collection of memory-mapped registers. By writing to or reading 
from fixed physical memory addresses, data is transferred to or from the network~, and the interface interprets the 
particular address as a command. 

A memory mapped interface allows us to use many of the memory-oriented mechanisms found in off-the-shelf 
processors to deal with network interface issues. To access the network, a user or compiler reads from or writes to 
locations in memory. We regarded the prospect of executing a system supervisor call for every communication as 
unacceptable, in part because we wished to support the fine-grain communication needs of data-parallel computation. 
A memory-mapped interface allows the operating system to deny users access to certain network operations by placing 
the corresponding memory-mapped registers on protected pages of the processor's address space. The processor's 
memory management unit enforces protection without any additional hardware. 

The interface is broadly organized as a collection of memory-mapped FIFO's. Each FIFO is either an outgoing 
FIFO to provide data to a network, or an incoming FIFO to retrieve data from a network. Status information can 
be accessed through memory-mapped registers. For example, to send a message over a network, a processor pushes 
the data into an outgoing FIFO by writing to a suitable memory address. When a message arrives at a processor, 
the event is signaled by interrupting the processor, or alternatively, the processor can poll a memory-mapped status 
bit. The data in the message can then be retrieved by reading from the appropriate incoming FIFO. This paradigm 
is identical for both the data and control networks. 

The network interface provides the mechanisms needed to allow context switching of user tasks. Each user 
partition in the CM-5 system can run either batch jobs or a timesharing system. When a user is swapped out 
during timesharing, the processors must save the computation state. Some of this state information is retrieved from 
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Figure 2: A binary fat-tree. Processors are located at the leaves, and the internal nodes are switches. Unlike an ordinary binary tree, 
the channel capacities of a fat-tree increase as we ascend from leaves to root. The hierarchical nature of a fat-tree can be exploit.ed to 
give each user partition a dedicated subnetwork which cannot. be interfered with by any other partition's message traffic. The CM-5 data 
network uses a 4-ary tree instead of a binary tree. 

the network interface, and the rest is garnered from the networks. The context-switching mechanism also supports 
automatic checkpointing of user tasks. 

The interface provides processor-address mapping so that the user sees a O-based contiguous address space for 
the processor numbers within a partition. Each processor can be named by its physical address or by its relative 
address within the partition. A physical address is the actual network address as interpreted by the hardware inside 
the networks. A relative address gives the index of a processor relative to the start of a user partition, where failed 
processors are mapped out. All processor addresses in user code are relative addresses. To specify physical addresses 
requires supervisor privileges. Relative addresses are bounds checked, so that user code cannot specify addresses 
outside its partition. 

The user's view of the networks is independent of a network's topology. Users cannot directly program the wires 
of the networks, as they could on our previous machine, the CM-2. The reason is simple: the wires might not be 
there! Because the CM-5 is designed to be resilient in the presence of faults, we cannot allow the user to rely on a 
specific network topology. One might think topology independence would hurt network performance, but we found 
this presumption to be less true than we initially imagined. Because we did not provide the user with access to the 
wires of the network, we were able to apply more resources to generic network capabilities. A further advantage of 
topology independence is that the network technology becomes decoupled from processor technology. Any future 
network enhancements are independent of user code and processor organization. 

An important ramification of the decoupling of the processors from the networks is that the networks must assume 
full responsibility for performing their functions. The data network, for example, does not rely on the processors to 
guarantee end-to-end delivery. The processors assume that delivery is reliable; nondelivery implies a broken system, 
since there is no protocol for retransmission. By guaranteein'g delivery, additional error-detection circuitry must be 
incorporated into the network design, which slightly reduces its performance, but since the processor does not need 
to deal with possible network failures, the overall performance as seen by a user is much better. 

The CM-5 network interface is implemented in large measure by a single I-micron standard-cell CMOS chip, with 
custom macro cells to provide high-performance circuits where needed. The interface chip is clocked by both the 
32-megahertz processor clock and the 40-megahertz networks clock. Asynchronous arbiters synchronize the processor 
side of the interface with the network side. 

Choosing to build a separate network interface allowed the processor designers to do their jobs and the network 
designers to do theirs with a minimum of interference. As a measure of its success in decoupling the networks from 
the processor organization, the same interface chip is used to interface the network to I/O channels, of which there 
are many types, including CMIO, VME, FOOl, and HIPPI. 

3 The CM-5 Data Network 
The basic architecture of the CM-5 data network is a fat-tree [8, 16]. Figure 2 shows a binary fat-tree. Unlike a 
computer scientist's traditional notion of a tree, a fat-tree is more like a real tree inthat it gets thicker further from 
the leaves. Processing nodes, control processors, and I/O channels are located at the leaves of the fat-tree. (For 
convenience, we shall refer to all of these network addresses simply as processors.) 

A user partition corresponds to a subtree in the network. Messages local to a given partition are routed within 
the partition's subtree, thereby requiring no bandwidth higher in the tree. Access to shared system resources, such 
as I/O, is accomplished through the part of the fat-tree not devoted to any partition. Thus, message traffic within 
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Figure 3: The interconnection pattern of the CM-5 data network. The network is a 4-ary fat-tree in which each internal node is made 
up of several router chips. Each router chip is connected to 4 child chips and either 2 or 4 parent chips. 

a partition, between a partition and an I/O device, or between I/O devices does not affect traffic within any other 
partitions. Moreover, since I/O channels can be addressed just like processing nodes, the data network becomes a 
true "system bus" in which all system components have a unique physical address in a single, uniform name-space. 

Of critical importance to the performance of a fat-tree routing network is the communication bandwidth between 
nodes of the fat-tree. Most networks that have been proposed for parallel processing, such as meshes and hypercubes, 
are inflexible when it comes to adapting their topologies to the arbitrary bandwidths provided by packaging technol­
ogy. The bandwidths between nodes in a fat-tree, however, are not constrained to follow a prescribed mathematical 
formula. A fat-tree can be adapted to effectively utilize whatever bandwidths make engineering sense in terms of cost 
and performance. No matter how the bandwidths of the fat-tree are chosen, provably effective routing algorithms 
exist [8, 15] to route messages near-optimally. The underlying architecture and mechanism for addressing is not 
affected by communication bandwidths: to route a message from one processor to another, the message is sent up 
the tree to the least common ancestor of the two processors, and then down to the destination. 

Because of various implementation trade-offs-including the number of pins per chip, the number of wires per 
cable, and the maximum cable length-we designed the CM-5 data network using a 4-ary fat-tree, rather than a 
binary fat-tree. Figure 3 shows the interconnection pattern. The network is composed of router chips, each with 4 
child connections and either 2 or 4 parent connections. Each connection provides a link to another chip with a raw 
bandwidth of 20 megabytes/second in each direction. (Some of this bandwidth is devoted to addressing, tags, error 
checking, etc.) By selecting at each level of the tree whether 2 or 4 parent links are used, the bandwidths between 
nodes in the fat-tree can be adjusted. Flow control is provided on every link. 

Based on technology, packaging, and cost considerations, the CM-5 bandwidths were chosen as follows. Each 
processor has 2 connections to the data network, corresponding to a raw bandwidth of 40 megabytes/second in and 
out of each processing node. In the first two levels, each router chip uses only 2 parent connections to the next higher 
level, yielding an aggregate bandwidth of 160 megabytes/second out of a subtree with 16 processing nodes. All router 
chips higher than the second level use all 4 parent connections, which, for example, yields an aggregate bandwidth of 
10 gigabytes/second, in each direction, from one half of a 2K-node system to the other. The bandwidth continues to 
scale linearly up to 16,384 nodes, the largest machine that Thinking Machines can currently build. (The architecture 
itself scales to over one million nodes.) In larger machines, transmission-line techniques are used to pipeline bits 
across long wires, thereby overcoming the bandwidth limitation that would otherwise be imposed by wire latency. 
The machine is designed so that network bandwidth can be enhanced in future product revisions without affecting 
the architecture. 

The network design provides many comparable paths for a message to take from a source processor to a destination 
processor. As it goes up the tree, a message may have several choices as to which parent connection to take. This 
decision is resolved by pseudorandomly selecting from among those links that are unobstructed by other messages. 
After the message has attained the height of the least common ancestor of the source and destination processors, it 
takes the single available path of links from that chip down to its destination. The pseudorandom choice at each 
levef balances the load on the network and avoids undue congestion caused by pathological message sets. (Many 
naive algorithms for routing on mesh and hypercubic networks suffer from having specific message patterns that do 
not perform well, and the user is left to program around them.) The CM-5 data network routes all message sets 
nearly as well as the chosen bandwidths allow. 

A consequence of the automatic load balancing within the data network is that users can program the network in a 
straightforward manner and obtain high performance. Moreover, an accurate estimate of the performance of routing 
a set of messages through the network can be predicted by using a relatively simple model [17]. One determines the 
load of messages passing through each arm of the fat-tree and divides this value by the available bandwidth . .The 
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Figure 4: The fonnat of messages in the data network. Each message contains routing instructions, a length field that indicates how 
many data words are in the message, a tag field that indexes an interrupt vector in the processor, data. words, and a cyclic redundancy 
check. 

worst-case such ratio, over all arms of the fat-tree, provides the estimate. 
On random permutations, each processor can provide data into, and out of, the network at a rate in excess of 

4 megabytes/second. When the communication pattern is more local, such as nearest neighbor within a regular 
or irregular two- or three-dimensional grid, bandwidths of 15 megabytes/second per processor are achievable. The 
network latency ranges between 3 and 7 microseconds, depending on the size of the machine. All of these empirical 
values include the time required for processors to execute the instructions needed to put messages into and take 
messages out of the network. 

The data network is currently implemented from I-micron standard-cell CMOS chips, with custom macro cells 
to provide high-performance circuits where needed. Each chip has an 8-bit-wide bidirectional link (4 bits of data in 
each direction) to each of its 4 child chips lower in the fat-tree, and 4 8-bit-wide bidirectional links to its parent chips 
higher in the fat-tree. The data-network chip can be viewed as a crossbar connecting the 8 input ports to the 8 output 
ports, but certain input/output connections are impossible due to the nature of the routing algorithm. For example, 
we never route a message from one parent port to another. When a message is blocked from its desired output port, 
it is buffered. Flow control information is passed in the reverse direction of message traffic to prevent buffer overflow. 
When multiple messages compete for the same output port, the arbitration is fair and prevents any link from being 
starved. We designed only one chip to do message routing, and we use the same chip for communication between 
chips on the same circuit board as between chips that are in different cabinets. . 

Interchip data is sent oil differential pairs of wires, which increases the pin count of the chips, but which provides 
{)utstanding noise immunity and reduces overall power requirements. We rejected using separate transceivers at the 
packaging boundaries, because it would have increased power consumption, board real estate, and the number of 
different chips we would have needed to design, debug, test, stock, etc. The diagnostics can independently test each 
conductor of each differential signal, because differential signals are so immune to noise that they sometimes work 
even with broken wires. 

The first 2 levels of the data network are routed through backplanes. The wires on higher levels are run through 
cables, which can be either 9 or 26 feet in length. The longer cables maintain multiple bits in transit. The wires in 
cables are coated with expanded Teflon, which has a very low dielectric constant. The cables reliably carry signals 
in excess of 90 percent of the speed of light. 

The data network chips are clocked synchronously by a 40-megahertz clock. The clock is distributed with very 
low skew-even for the biggest machines-by locally generating individual clocks and adjusting their phases to be 
synchronous with a centrally broadcast clocking signal. 

Messages routed by the data network are formatted as shown in Figure 4. The beginning of the message contains 
routing instructions that tell how high the message is to go in the tree and then the path it is to follow downward 
after it reaches its zenith. The routing instructions are chip-relative instructions that allow each chip to make a 
simple, local decision on how to route the message. Following the routing instructions is a field that indicates the 
length of the data in 32-bit words. Currently, the CM-5 network interface allows between 1 and 5 words. Longer 
messages must be broken into smaller pieces. Following the length field is a 4-bit tag field that can be used to 
distinguish among various kinds of messages in the system. The network interface interprets some of these tags as 
system messages, and the rest are available to the user. When a message arrives. at a processor, the tag indexes a 
16-bit mask register in the network interface, and if the corresponding m~k bit is 1, the processor is interrupted. 
After the tag comes the. data itself, and then a field that provides an integrity check of the message using a cyclic 
redundancy code (CRC). 

Because we desired to build very large machines, we deemed it essential to monitor and verify the data network 
dynamically, because the chances of a component failure increase with the size of the system. Message integrity is 
checked on every link and through every switch. If a message is found to be corrupted, an error is signaled. Messages 
snake their way through the switches in a manner similar to cut-through [13] or worm-hole [3, 4] routing, and so by 
the time that a data-network chip has detected an error, the head of the message may have traveled far away. To 
avoid an avalanche of errors, the complement of a proper CRC is appended to the message. Any chip that discovers 
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the complement of a proper CRC signals a secondary error. Thus, a typical error causes one chip to signal a primary 
error with a trail of chips reporting secondary errors, although there is some positive probability that a primary 
error is reported as a secondary error. Diagnostic programs can easily isolate the faulty chip or link based on this 
information, which is accessible through the diagnostic network. Lost and replicated messages can be detected by 
counters on each chip and in the network interfaces that maintain the number of messages that pass on each link. 
Using a variation on Kirchoff's current law, the number of messages entering any region of the network, including 
the entire network or a single chip, must eventually equal the number of messages leaving the region. This condition 
is checked for the entire data network by the control network (see Section 5). 

Once a faulty processor node, network chip, or interconnection link has been identified, the fault is mapped out 
of the system and quarantined. The network interface allows for mapping faulty processing nodes out of the network 
address space. The rest of the system ignores all signals from the mapped-out portion, thereby allowing the system 
to remain functional while servicing and testing, or even powering down, the mapped-out portion. 

When a chip or link in the data network fails, there are two mechanisms to map around the fault. Either the 
network can be configured to route messages away from the failure, or processing nodes that might use the chip or 
link can be mapped out. By picking the better of the two alternatives, the system can guarantee either that at most 
6 percent of the network is lost or that at most 1/64 of the processing nodes are mapped out. 

The network has a contract with processors that guarantees all messages are delivered. The contract says, "The 
data network promises to eventually accept and deliver all messages injected into the network by the processors as 
long as the processors promise to eventually eject all messages from the network when they are delivered to the 
processors." The data network is acyclic from inputs to outputs, which precludes deadlock from occurring if this 
contract is obeyed. To send a message, a processor writes the destination processor address and data to be sent 
to a memory-mapped outgoing FIFO in its network interface. The processor then checks whether the message was' 
accepted by the network. If not, which may occur because flow control information indicates that the network 
has not removed enough of a previous message from the outgoing FIFO, the processor can try again later. The 
processor may not block or spin when attempting to put a message into the network, however, because that would 
violate the contract. Instead, the processor must attempt to receive any messages that have arrived. In the current 
implementation, the processor is involved in all transactions with the network. 

Although the simple contract above can implement the sending of data through the network in a deadlock­
free manner, it is not strong enough to allow some communication protocols to be implemented straightforwardly. 
Consider, for example, the fetch-deadlock problem: each processor wishes to fetch a value from another processor, 
and the processors have finite buffer space. The message traffic for a protocol that solves this problem corresponds 
to a round trip in the network: a request from one processor to another, followed by a response from the other to 
the one. In this scenario, one processor may receive requests for data from many processors, but unfortunately, be 
unable to send responses because its outgoing FIFO to the data network is busy. The outgoing FIFO will eventually 
free, according to the contract, but only if the processor continues to accept delivery of messages from the network. 
With finite buffer space, however, there is a limit to how many requests it can handle. When it runs out of buffer 
space, the processor will be forced to refuse delivery, thereby breaking the contract, and deadlock may result. 

With buffer space proportional to the number of processors in the system, it is possible to construct a "round­
trip" protocol that solves the fetch-deadlock problem. The key idea is to program a reservation mechanism [14] that 
ensures that at most a bounded number of messages are outstanding between any two processors at any time. A 
processor X does not attempt to send a message to another processor Y until Y informs X that it has room to 
handle the message. This protocol, which has been implemented on some parallel computing systems, including the 
CM-5, requires a substantial software overhead for bookkeeping. 

The CM-5, however, provides another way to solve the fetch-deadlock problem in a simple fashion requiring no 
bookkeeping and only constant buffer space. Each processor has 2 outgoing and 2 incoming FIFO's in its interface 
to the data network: a left port and a· right port. The topology of the network is such that all links reachable from 
the left port are unreachable from the right port and vice versa. Thus, the 'data network is really two independent, 
interleaved networks. To implement the round-trip protocol, requests can be sent on the left side of the network, and 
responses returned on the right side. If a processor cannot send a response on the right side and his constant-size 
buffer is full, he stops receiving on the left side. Since any processor requesting data has a place to put it, however, 
the processors can satisfy the contract on the right side, and the responses will eventually clear out. Because the 
responses on the right side will eventually clear out, a processor can always eventually accept every request that 
arrives on the left side, and thus the processors satisfy the contract on the left side. Consequently, deadlock cannot 
occur. 

In fart. deadlock cannot occur even if responses are sent on both sides of the data network, as long as requests 
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are sent on one side only. The data network requires no more than two sides, even when there are many intermediate 
destinations, because such a communication pattern can be broken into a collection of round trips. 

The CM-5 programming systems (Fortran90, C*, and *Lisp) never allow a user to deadlock,· because they imple­
ment deadlock-free protocols for communication. Deadlock can occur, however, if a programmer chooses to program 
the individual processing nodes directly. All he need do is break the contract that the processing nodes have with 
the data network: he writes code that sends messages but never attempts to receive them. This danger may seem 
quite alarming, but it is no more alarming than the danger that a user writes an infinite loop. On the CM-5; the user 
can send and receive messages without executing a system call, as is required on many other systems. By giving the 
user direct access to the network, the user can in some circumstances obtain greater efficiency than he could obtain 
with the communication routines available in the standard system libraries. If he does deadlock himself, or write an 
infinite loop, he does not affect any other uSer. 

Each user partition in the CM-5 system is capable of being run in either a batch or a timesharing mode. The 
requirement for timesharing raises the issue of what should be done with messages that are in transit in the routing 
network when a user's timeslice has expired and another user must be given access to the partition. The system 
cannot afford to wait until the user completes his communication, since the communication may not terminate for a 
very long time, and, in fact, it may never complete if the user has deadlocked himself . 

. We considered several solutions to the problem of swapping users. For example, we considered entering a special 
routine that would pull messages out of the router and discard them. This solution was considered too expensive, 
because the user would be constantly forced to checkpoint the computation so that the discarded messages could be 
reconstructed. Moreover, if the user fills the network with messages that are all addressed to the same processing 
node, then the time to empty the router would be proportional to the machine size, which was deemed unacceptably 
long. 

This problem of swapping users is solved in the CM-5 by putting the data network into all-fall-down mode. 
Instead of trying to route messages to their destinations, when a data-network chip is in all-fall-down mode, each 
message is r~>uted downward· according to a fixed permutation that has been preprogrammed by the system and 
which ensures that all-fall-down messages are distributed evenly among the processing nodes. In the worst case, 
each node receives only a small number of misdirected messages, even if all messages were headed for the same 
destination processor. The all-fall-down messages can then be saved in memory with the user's state. When the 
user's task is resumed, the system resends them to their true destinations. Even if a timeshared user deadlocks, this 
context-switching mechanism precludes him from unduly affecting the other users who are sharing his partition. 

During our design of the all-fall-down mechanism, the problem arose of how to set all chips of a partition into this 
mode. We considered engineering a mechanism in which all chips were put into all-fall-down mode simultaneously, 
but even so, we considered it a lot of detailed engineering work to guarantee that messages between chips when 
all-faIl-down was initiated would be handled properly. Instead, we adopted a simple protqcol to allow chips in the 
data network to be put into all-fall-down mode in any order. The basic idea is that all-fall-down messages are 
marked as such. When a chip sees an all-fall-down message, it routes it downward according to the preprogrammed 
permutation, even if the chip is not in all-fall-down mode and is routing other messages in a normal fashion. Thus, 
once a message starts falling, it keeps falling and is never interpreted by any chip as anything but an all-fall-down 
message. 

In summary, the CM-5 data network provides fast point-to-point communication of data, but as importantly, it 
provides flexible solutions to system problems. 

4 Synchronized MIMD 
The CM-5 is a synchronized MIMD machine. Whereas the data network in the CM-5 is responsible for moving data 
efficiently between pairs of processors, the CM-5's control network provides an infrastructure for the coordination 
and synchronization of an entire set of processors. Much as a conventional microprocessor is divided into control and 
datapath [10, Chapter 5], we found that partitioning communication into a control network and a data network led 
to a simpler, more efficient design. This section discusses why we adopted a synchronized MIMD execution model 
for the CM-5. 

A major design goal of the CM-5 was to support the data-parallel programming model [2, 11] efficiently. The 
basic idea of data parallelism is that processing large amounts of data usually implies that the same operations are 
performed on all elements of large sets of data. ' Consequently, these operations can be. performed in parallel. For 
example, an operation might be specified for all pixels of digitized image, in which case it can be performed in parallel 
on each of the pixels. Data-parallellanguages-such as Fortran90, C*, and *Lisp-allow the programmer to express 
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such operations naturally. The programmer applies parallel operations to an entire set of data simultaneously, and 
the system efficiently multiplexes the computation onto the processing nodes ofthe machine. 

Traditionally, the data-parallel model has been supported by so-called single instruction stream, multiple data 
stream (SIMD) parallel computers, such as our previous machine, the Connection Machine CM-2. SIMD machines 
typically have two networks. Besides a message-routing network, these machines employ a broadcast network over 
which a front-end processor distributes instructions to the individual processing nodes in the system. All processing 
nodes receive and execute the same instruction at the same time. Based on data in its memory, however, a processor 
may decline to execute an instruction and sit idle instead. In the CM-2, the broadcast network is embellished with 
an OR network, which can compute a logical OR of boolean values, one value per processing node, and distribute 
the result back to the processing nodes. 

There are many advantages of using a SIMD architecture to execute data-parallel code. When a parallel operation 
is applied to a large set of data, each processor receives the same instructions and executes the same code, thereby 
causing the operation to be applied to each of the individual elements. Since SIMD machines are highly synchronized, 
it is also easy to coordinate processors to perform cooperative actions. Moreover, all processors are doing much the 
same thing, and thus the broadcasting of instructions saves the need to implement instruction-fetch units in all of 
the processing nodes. 

SIMD machines are less efficient, however, when different processors wish to execute different sections of code. 
The machine must step through each section of code serially while processors not interested in the particular section 
of code being executed sit idle. This loss of efficiency limits the flexibility of SIMDmachines. 

In contrast with the SIMD machine organization is the multiple instruction stream, multiple data stream (MIMD) 
organization of a parallel computer. In a MIMD machine, each processor executes its own instruction stream, and 
thus there is no loss of efficiency when processors execute different code. Typically, processors in MIMD machines 
communicate among themselves using message-passing techniques [19, 20] or through shared memory [6, 7], but 
there is little or no architectural support for coordinating and synchronizing sets of processors. A programmer must 
synthesize aggregate operations himself, resulting in considerable code complexity and loss in performance. Thus, 
the greater flexibility of MIMD comes at a great cost. 

In the CM-5, we abandoned the SIMD architecture of its predecessor, the CM-2, in favor of a MIMD execution 
model, but we salvaged SIMD's best attributes: the ability to share data among processors efficiently and the 
ability to quickly synchronize sets of processors. To support the sharing of data, the control network provides a fast 
broadcast mechanism. To support the synchronization of sets of processors, the control network provides fast "barrier 
synchronization." These two mechanisms allow data-parallel code to be executed efficiently on what is otherwise 
a MIMD machine. We now briefly discuss how each of these mechanisms supports the data-parallel programming 
model. 

To execute a data-parallel program on the CM-5, the control processor broadcasts a section of the data-parallel 
program to the processing nodes, rather than broadcasting the entire instruction stream, as in a typical SIMD 
machine. The idea of distributing a single program to mUltiple processors has been dubbed "SPMD," for single­
program, multiple data [5]. Unlike shared-memory machines, in which processors must individually fetch the program 
from a central memory, however, in the CM-5, the control processor broadcasts the program to the processing nodes 
over the control network, and then the processors execute the program locally. 

As long as a processor in a data-parallel programming environment does not communicate with other processors, 
it can execute code without worrying where in the code the other processors are. When processors communicate, 
however, program correctness often demands that processors know when it is safe to proceed to the code after the 
communication step. In particular, a processor may not know for a given communication pattern whether it will 
receive zero, one, or more messages, and thus it cannot determine whether it can proceed without some knowledge 
of whether other processors still have messages to send it. Consequently, the CM-5 provides a synchronization 
mechanism to inform all processors of the termination of message routing on the data network. 

The CM-5 provides barrier synchronization (see, for example, [12, 21, 5]) via its control network. In barrier 
synchronization, a point in the code is designated as a barrier. No processor is allowed to cross the barrier until all 
processors have reached the barrier. In addition, the barrier mechanism in the CM-5 can check whether message 
routing is complete in the data network. By providing barrier synchronization in hardware, we avoided the com­
plicated protocols that users often implement by hand on MIMD machines that are not synchronized. Since our 
mechanism is a parallel one, we also avoid the performance problems endemic to machines that support barriers 
through the use of shared semaphores. 

We discovered four implementation advantages of synchronized MIMD over SIMD. First, the bandwidth in and 
out of a processing node is a critical resource. A program is typically much shorter than the instruction stream it 
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generates. By broadcasting a program to the processing nodes, rather than sending its entire instruction stream, 
less of the bandwidth into a node is required for instructions, and hence more is available for communicating the 
user's data. Second, since processing nodes fetch their instructions locally, we were able to build the CM-5 from 
standard microprocessors rather than having to design our own. At the time of this decision, high-performance RISC 
microprocessors were just becoming available. We decided they were a good technology curve to "ride" and would 
allow us to focus more of our internal effort on networks and vector units, the bread and butter of high-performance 
computing. Third, the implementation of a control network gave us a platform to solve other system coordination 
problems. For example, if a user hangs up one or all of his processors, the operating system can broadcast a message 
that causes the processors to trap to supervisor code. Fourth, oui' synchronized MIMD architecture can execute more 
traditional MIMD code. For .example, we have been able to port message-passing applications from other MIMD 
machines, and in many cases, to simplify and speed them up considerably by replacing their elaborate protocols with 
simple uses of our control network. 

To summarize, the synchronized MIMD architecture of the CM-5 simply and efficiently provides the flexibility of 
MIMD and the SIMD ability to coordinate sets of processors. 

5 The CM-5 Control Network 

There are two general classes of operations on the control network: broadcasting and combining. Separate FIFO's 
in the network interface correspond to each type of control-network function. A processor pushes a message into one 
of the outgoing FIFO's, and shortly after all processors have pushed messages, the result becomes available to all 
processors as messages in their respective incoming FIFO's. 

Every operation on the control network potentially involves every processing node. Broadcast messages from 
the control processor are replicated at nodes in the tree and distributed to the subtrees. Other operations, such as 
scans (parallel prefix), require input from all processors and provide output to all processors. The control network is 
pipelined, so that several messages can be sent before any are received. To provide further flexibility, each processing 
node can set up the network interface to abstain from certain control-network operations. These operations complete 
as if the abstaining processors had provided "identity" data, but without making them waste processing cycles. 
Overall, the control network is designed to support cooperative functions that require little bisection bandwidth, and 
hence, which can be implemented efficiently on a simple tree. 

Broadcasting 

A processor may broadcast a message through the control network to all other processors in its partition. The control 
network supports four kinds of broadcasting: user broadcast, supervisor broadcast, interrupt broadcast, and utility 
broadcast. User and supervisor broadcasts are essentially identical, except that supervisor broadcasts are privileged 
operations. These broadcast operations can be used to download code and to distribute data. An interrupt broadcast 
is a privileged operation that causes every processor to receive an interrupt. Interrupt broadcasts provide the ability 
to "grab the attention" of all processors in the user partition, which is especially useful for implementing operating 
system functions, such as swapping timeshared users. The utility broadcast is used by the operating system to 
configure partitions and to perform other sorts of system operations. 

Only one processor may broadcast at a time, but broadcasts are pipelined so that the broadcasting processor 
can fully utilize the broadcast bandwidth of the network. If, while one processor is broadcasting, another processor 
sends a broadcast message, the control network signals an error when the competing messages collide. The number 
of simultaneous pipelined broadcasts supported by the control network depends upon the height of the network 
partition. The current implementation of the CM-5 provides the user with up to 8 words in a broadcast and the 
supervisor with up to 4 words. 

Combining 

The control network supports four different types of combining operations: reduction, forward scan (parallel prefix), 
backward scan (parallel suffix), and router done. Moreover, the network interface chip is capable of masking out 
processors that do not wish to participate in a control-network operation, so that operations can be performed only 
on a subset of the processors in a partition. Only one combining operation can be initiated at a time, but the network 
is pipelined, which allows several operations to be initiated rapidly in sequence. 

A reduction operation combines values provided by all (participating) processors according to a user-supplied 
operator and delivers a copy of the result to all processors. Messages are combined with one of five operators OIl 

32-bit words: bitwise logical OR, bitwise logical XOR, signed maximum (which also works for IEEE floating-point 
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numbers), signed addition, and unsigned addition. (The two addition operators differ in how overflow is reported.) 
Reductions over other commonly occurring operators (such as bitwise logical AND) can be easily synthesized from 
these and local processor operations. The control network also supports reductions on values larger than 32 bits by 
a sequence of 32-bit reductions, each of which saves residual data, such as a carry in the case of addition, which is 
input to the next reduction in the sequence. Since the control network is pipelined, the latency for a multiple-word 
reduction operation is not unduly affected. 

A forward scan operation delivers to the ith processor the result of applying one of the five reduction operators 
to the values in the preceding i - 1 processors (in the linear order given by data network address). For example, 
a forward scan of the vector (3,2,0,4,2,6,5,8) with the operator + yields the vector (0,3,5,5,9,11,17,22). A 
backward scan provides similar functionality in the reverse direction. Scans can be segmented: if a "segment start" 
bit in the network interface is set, the scan starts over at that point. Backward scans are also supported. All basic 
scan operations use l-word (32-bit) inputs, but multiple-word scans are supported by a sequence of I-word scans in 
a manner similar to multiple-word reductions. An excellent discussion of scans can be found in [2]. 

Early on in the design of the CM-5, we decided to support scans in hardware. Our experience with the 
CM-2 showed that many high-performance data-parallel algorithms-including both combinatorial and numerical 
algorithms-make extensive use of scans. The operations that were selected (OR, XOR, etc.) reflect a compromise 
between making the hardware fast and simple and providing sufficient building blocks out of which other operations 
could be constructed. For instance, OR can be used to implement AND (DeMorgan's law), so there is no need to 
implement both. As a more sophisticated example, segmented reductions, which are not provided directly by the 
hardware, can be implemented by using two segmented scans, one forward and one backward. Since the control 
network is pipelined, the overhead of doing both is minimal. 

The router-done operation is a specialized reduction that lets the processors know when communications involving 
the data network are complete. In the data-parallel programming model, this operation is often required so that 
processors know when it is safe to proceed to the next data-parallel operation. 

The basic idea behind the implementation of router-done is "Kirchoff's current law." When all processors have 
completed sending their messages and the number of messages that entered the data network equals the number 
that have left, the routing cycle is complete. The network interfaces keep track of the number of messages that enter 
and leave the data network. After a processor has completed sending all its messages, it pushes a message into the 
outgoing router-done FIFO. When all processors have sent messages into their outgoing FIFO's, the control network 
continually monitors the difference between the total number of messages put into the data network and the number 
removed from the data network. When this number becomes zero, each processor receives a message in its incoming 
router-done FIFO informing it that the data network is done routing messages. Using this "Kirchoff" method has 
the additional benefit that if a hardware error causes messages to be lost or created, the error can be detected and 
signaled, either by a failure of the router-done operation to complete on the one hand or by the unexpected arrival 
of a message after the router-done operation has completed on the other. 

The CM-5 control network also supports one synchronous OR operation and two identical asynchronous OR 
operations that can operate in parallel with other network oprations, and have separate FIFO's in the network 
interface. The synchronous OR is similar to an OR reduction, except that a processor's input and output each 
consist of only a single bit. Each asynchronous OR operates continuously without waiting for all processors to 
participate. Processors are free to change their inputs at any time and sample the output. The asynchronous OR 
can be used for signaling conditions and exceptions. The transition of an asynchronous OR from ° to 1 can be used 
to signal an interrupt. One of the two asynchronous OR's is privileged, and the other is nonprivileged. 

The synchronous OR or any of the various combining operations can be used to implement split-phase barrier 
synchronization [23]. (In independent work [9], this type of synchronization has been called a fuzzy barrier.) In a 
split-phase barrier, the barrier is a region of code with an entry and an exit. (If the region is empty, an ordinary 
barrier results.) When a processor enters the split-phase barrier, it pushes an input message into an appropriate 
outgoing FIFO. Shortly after all other processors have pushed their messages, they all receive messages from the 
corresponding incoming FIFO; and each can infer that all have entered the barrier. The advantage of a split-phase 
barrier over an ordinary barrier is that the processor can execute code while waiting for the barrier to complete. 
Thus, just as the instruction following a delayed branch in a RISC architecture can compensate for the latency of the 
branch, the code between barrier entry and exit can compensate for the latency of synchronization. The router-done 
operation couples barrier synchronization with the test of whether routing on the data network has completed, so 
that no processor abandons its effort to receive messages until all processors are done sending them. 

The control network also detects certain kinds of communication errors and distributes them throughout the 
system. For example, if two processors attempt to perform different combining operations, an error is signaled. 
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Figure 5: The fonnat of messages in the control network. Each message contains a field that indicates the type of message, a 32-bit 
word of data, some synchro~zation bits, and various other Bags. The message is checked using a cyclic redundancy code. 

More importantly, hard errors detected by the data network and the network interfaces are collected by the control 
network. These error signals ~re combined using a logical OR and are redistributed to all the processors so that the 
operating system can isolate them and recover if possible. 

Organization of the control network 

The architecture of the control network is that of a complete binary tree with processing nodes, control processors, 
and I/O channels at the leaves. When a CM-5 system is configured, each user partition is assigned to a _subtree of 
the network. Processing nodes are located at the leaves of the subtree, and a control processor is mapped into the 
partition as an additional leaf. 

The control network is implemented using a I-micron CMOS standard-cell chip that contains custom macro cells 
to implement high-performance circuitry. Like the data network chip, it uses a 40-megahertz clock. Three binary-tree 
nodes are packaged on each chip. There are 4 ll-bit-wide bidirectional links (6 bits in the up direction and 5 bits in 
the down direction) to 4 child chips lower in the tree and Ill-bit-wide bidirectional link to a parent. As in the data 
network, interchip signals are sent on differential pairs of wires. 

Unlike data network packets, control petwork packets have a fixed length of 65 bits. (There is actually, in addition, 
a 5-bit packet used during system initialization to align the 65-bit packet boundaries so that a node can process 
the same fields in arriving messages at the same time.) The general format is illustrated in Figure 5. It is broken 
into two parallel streams, a major stream and a minor stream. The minor stream contains a variety of control bits, 
including various error and status flags, several flolY-control bits, and a bit to implement segmented scans. The 
major stream begins with a packet description field, which defines the packet type-single-source, multiple-source, 
idle, or abstain-as well as the specific operation-user broadcast, supervisor broadcast, interrupt, scan (including 
combiner), reduce, etc. Then comes a 32-bit word of data. The major stream ends with a field containing the 
global synchronization bits. The entire packet is checked using a cyclic redundancy code (CRC), which is the last 
information in the packet to be transmitted. 

The four packet types are processed differently by the control network. Whereas single-source packets are used 
to implement broadcasting, scans and reductions employ multiple-source packets. Idle packets are used as "filler" 
and are sent when a control network node has nothing better to ship. The abstain packet allows a control network 
node to proceed when it would otherwise wait for a multiple-source packet. 

When a processor initiates a broadcast or interrupt through the control network, its network interface inserts a 
single-source message into the tree at a leaf. This message proceeds up to the root node of the user's tree, where it is 
turned around and distributed to all the processors in the partition. An error is signaled if two single-source packets 
from different sources meet at a control network node. If it meets with other kinds of packets, a single-source packet 
has priority. There is no buffering for single-source packets. Flow control for single-source packets is implemented 
by the network interface on an end-to-end basis. 

Processing multiple-source packets is more involved. When a processor initiates a cooperative operation such as a 
scan, the network interface inserts a multiple-source message into the tree. At each internal node, a multiple-source 
message waits until its sibling's message has arrived. While a message is waiting, the node sends idle messages up the 
tree. When the sibling's message arrives, arithmetic or logical operations combine the two messages into one, whjch 
is sent up the tree. To implement scans, the message or its sibling may be put asid~ in another buffer to combine 
later with a value coming from the node's parent. When a multiple-source message finally reaches the root, it is 
sent downward. As it reencounters the internal nodes of the tree, it is replicated or further combined with waiting 
messages. (A good overview of the implementation ofscans can be found in [2].) 

While a multiple-source packet is waiting for a sibling or a parent, other packets arriving on the same input 
can be processed. If the newly arriving packet is a single-source packet, it proceeds ahead of the waiting packet, 
thereby giving priority, for example, to supervisor broadcasts and interrupts. If the new packet is another multiple­
source packet, it is queued in the buffer behind the packets already waiting. Multiple-source packets thus maintain 
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a consistent order, which allows two or more combining operations on the control network to be pipelined properly. 
Flow control in the network precludes buffers from overflowing. 

An important requirement of the control network was that it be able to connect a control processor to each user 
partition. The control processor executes the scalar part of the data-parallel code, while the processing nodes execute 
the parallel part. We considered having scalar code executed by one or all of the processing nodes, but eventually 
decided that having a control processor associated with each partition would simplify matters. First, since the system 
cost of the control processor is very low compared with the multitude of processing nodes, we can afford to run it with 
large amounts of memory and with additional architectural features to enhance its performance. Consequently, the 
control processor is able to more efficiently execute scalar code than can a processing node. Second, the data-parallel 
code that runs on the earlier CM-2 machine is already split into scalar and parallel parts. Porting this code to the 
CM-5 was easier, since we could maintain the same split. Finally, since the control processor has a connection to an 
Ethernet, the user partition can run a standard Unix which communicates across the attached Ethernet. 

At the end of a user's timeslice during timesharing, the control network can be flushed in a manner similar 
to a broadcast operation, aborting any user-level control-network operations in progress. The network interfaces 
retain the values that the user has pushed into the control network until the corresponding operation has completed, 
however. These values are saved as part of the user's state. When the user's task is resumed, the saved values can 
be used to reinitiate the control-network operations. 

In case of a fault in a CM-5 processing node, network chip, or interconnection link, the control network-like the 
data network-can be configured to map the fault out of the system. The diagnostic network (see Section 6) can 
set internal switches within the control network to map out parts of the control network. Since the computations 
performed by the control network depend only on the control network being a binary tree, and not on its being 
a complete binary tree, computations within the control network can safely ignore the mapped-out portions of the 
system. 

In addition, the control network has some additional switching capability to map around faults in the control 
network itself and to be able to connect any of the control processors to any partition. This additional switching 
capability is implemented as follows. Conceptually, each switch of the control network has 2 parents and 4 children 
and contains two binary-tree nodes which can be statically configured so that either can connect to any pair of 
children. By connecting these chips in a manner similar to the data network fat-tree, any control processor can 
be connected to any partition, subject to the availability of bandwidth. For example, if there are only 4 control 
network channels into a subtree, one cannot connect 5 control processors to 5 partitions in the subtree. Short of this 
bandwidth restriction, however, any connection of control processors to legal partitions can be implemented using 
an off-line routing algorithm similar to that in [16, Theorem 1]. 

In summary, the CM-5 control network provides the mechanisms to allow data-parallel code to be executed 
efficiently, as well as allowing more general kinds of parallel models to be implemented. Its structure as a binary tree 
provides an inexpensive way to provide the advantages of both traditional SIMD and traditional MIMD architectures. 

6 The CM-5 Diagnostic Network 

During the design of the CM-5, great emphasis was placed on system availability. Despite conservative design 
techniques and the use of proven circuit and interconnect technologies, the sheer size of the largest CM-5 systems 
forced us to abandon any attempt to achieve high availability by depending solely on inherent component reliability. 
Instead, our strategy relies on two architectural features of the machine: diagnosability which allows missing or 
broken hardware to be detected and isolated; and configurability, which allows most of the machine to operate when 
portions are broken or being serviced. This section shows how this strategy is implemented on the CM-5 through 
the use of a diagnostic network, the one network in the system that the user never sees. 

One strategy to diagnose a parallel computer is t~ create diagnostic programs running on the processor nodes 
that exercise the processor nodes ~nd various communications networks. When some part of the system fails to 
function correctly-for example, the data router fails to deliver a message or the control network produces the wrong 
answer for a combine operation, the diagnostic program itselC may Cail, because its correctness depends on the correct 
functioning oC the system. We call such diagnostic programs functionality dependent. Our experience with the CM-l 
and CM-2 exposed many oC the limitations oC functionality-dependent diagnostics. They are exceedingly difficult to 
write, they have nebulous coverage, and they lack precision in reporting the root cause of error conditions. 

In contrast, diagnostics that are functionality independent rely on specific test structures, rather than the failure 
of normal system operation, to detect faults in the system. Using this kind oC design-Cor-testability strategy, it 
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becomes possible to view the CM-5 (or any sequential machine, for that matter) in terms of registers connected by 
combinational logic and wires. This change in perspective permits commercially available software tools to be used 
to generate high-coverage tests automatically for chips, boards, and the wiring that connects them. Moreover, when 
these tests fail, they provide specific information on the location and extent of the failure. 

In the CM-5, design for testablity starts at the chip level. All CM-5 VLSI components support the IEEE 1149.1 
testability architecture standard [1], also known as JTAG, for the Joint Test Action Group which originated the 
standard.1 At the system level, the CM-5 diagnostic network provides parallel access to all system components from 
a diagnostic processor. The JTAG standard and the diagnostic network combine to form a diagnostic system which 
can quickly perform an in-system check of the integrity (over 99 percent single stuck-at fault coverage) of all CM-5 
chips that support the JTAG-standard and all networks. 

Let us briefly review the JTAG interface standard. The JTAG standard provides a 4-pin interface for each chip in 
a system. On each chip, two pins provide input and output, respectively, for a selectable scan chain within the chip.2 
The standard specifies the boundary scan register (BSR) which connects all I/O pads in the chip into a bit-serial 
shift register. Two other pins serve as clock and control inputs. By scanning data in and out of chips, the BSR can 
be used to apply stimulus to the chip core for chip tests, or to monitor inputs and control outputs of the chip for 
connectivity tests. 

In the CM-5, we extended the JTAG standard to include full internal scan in all proprietary chips. Details of this 
design are described in [25]. The use of a full internal scan allows software for automatically generating test patterns 
to generate a set of scan vectors with very high fault coverage. The vectors can be applied through the JTAG 
interface to test individual chips when they are manufactured and packaged. Later, when the chips are assembled 
into a system, the same tests can be applied through the diagnostic network. 

The JTAG interface is designed to extend to multichip systems. When more than one chip is incorporated in a 
system, the scan paths are linked together in series by connecting the output from one scan path to the input of 
the next in a daisy-chain fashion. The clock and control pins are connected in parallel so that these signals can be 
broadcast to all chips in the chain. 

Previous designs have focused on reducing the length of very long scan chains by placing scan-controllable bypass 
elements in the scan chain [22]. Unfortunately, testing all the chips in the system stilI requires serial access to each 
one. Even with ideally short test times on the order of seconds per device, this method would be unacceptably slow 
for an entire 16,384-node CM-5 comprising many tens of thousands of devices. Moreover, this method fails to take 
advantage of the inherent parallelism that can be achieved by testing large numbers of identical system components. 
For these reasons, it was evident early on in the design of the CM-5 that we needed a parallel strategy for supporting 
scan-based diagnostics. 

The CM-5 diagnostic network provides simple and reliable access to the system components of the CM-5. It 
provides scan access to all chips supporting the JTAG standard, and programmable ad hoc access to non-JTAG 
chips. The diagnostic network itself is completely testable and diagnosable. The diagnostic network is able to map 
out and ignore parts of the machine that are faulty or powered down. It can be partitioned consistently with user 
partitions. The network is able to select and access groups of system chips in parallel, including: 

• a single chip; 
• a single type of chip; 
• the chips within a user partition; 
• the chips associated with a geographical portion of the system, e.g., a given board, backplane, cabinet, etc.; and 
• unions and intersections of previously specified sets of chips. 

The diagnostic network is organized as a (not necessarily complete) binary tree, at the root of which sit one or 
more diagnOstic processors, and at the leaves of which are pods. Each pod is a physical subsystem, such as a board, 
which directly supports the JTAG interface. At any given time, a single diagnostic processor controls the diagnostic 
network. From the root of the tree, an individual pod can be addressed by giving a binary number, each bit of which 
corresponds to a level in the tree and specifies a path from the root to the leaf: bit i of the address specifies whether 
the addressed leaf is in the left or right subtree of the node at level i. If the height of the tree is h, then h bits are 
sufficient to specify any leaf. 

1 In the CUJTellt implementation of the CM-S architecture, neither the SPARC proceaaornodes nor the DRAM chips support the JTAG 
interface. Given the growing acceptance of JTAG standard, however, it is likely that ofl'-the-shelfproceaaorB and memory will support the 
standard in the near future. The CM·S architecture is designed to incorporate these JTAG-supporting chips when they become available. 

2This use of the term "scan" has nothing whatsoever to do with parallel prefix and suffix computations, as discussed in Section 5. 
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Figure 6: Steering a token down the diagnostic network. The address is decoded digit-serially, where each digit i. 0, 1, or B, representing 
a selection of the left subtree, right subtree, or both subtrees, respectively. The example shows the selection made by the address 00B10B. 

The diagnostic network allows groups of pods to be addressed according to a "hypercube address" scheme. For a 
tree of height h, a diagnostic virtual address is an h-digit number in which each digit is a 0, lor B. The B ("both") 
digit is a "wild-card" that matches both 0 and 1. For example, in a height-6 tree, the address 00B10B addresses 
the set {000100, 000101, 001100, 001101}, or {4, 5,12, 13}. The addressing scheme can also be used to address the 
internal nodes of the diagnostic network by specifying addresses with fewer than h digits. 

The decoding logic to implement the diagnostic virtual addressing scheme is based on the notion of steering 
"tokens" down the tree, as is illustrated in Figure 6. The mechanism works as follows. A token is inserted at the 
root of the tree together with a diagnostic virtual address, which is piped digit-serially into the root of the tree, 
high-order digit first. The root selects its right, its left, or both of its subtrees based on the high-order digit. If both 
subtrees are selected, the token splits into two tokens. Subsequent digits then steer the tokens and subsequent digits 
down the selected paths. When the end of the address is encountered, the nodes holding tokens are considered to be 
selected, and nodes on paths from them to the root provide the conduit for control. 

Tokens and their paths from the root stay in place until a subsequent address erases them or until they are 
explicitly erased. This feature can be employed to combine two sets of selected nodes. For conceptual simplicity, 
suppose each of the two sets of nodes is in a separate subtree of the root. First, the left set is selected using a 0 as 
the high-order digit and pushing a token down the appropriate paths. Next, the right set is selected using a 1 as the 
high-order digit and pushing a token down the appropriate paths. The left set remains intact, but is temporarily 
inaccessible from the root because the right set is being selected. Finally, we push another token with an address of 
B to select the root itself and cause it to enable both its children, thereby merging the two sets. More complicated 
set unions are possible using this basic mechanism. 

Most of this mechanism is hidden from the diagnostic engineer. Software extends the diagnostic virtual address 
within pods to address individual chips. Software also converts between the diagnostic network addresses and two 
other kinds of addresses: geographical addresses, which specify cabinets, backplane, slot type, slots, etc.; and network 
addresses, which give the locations of components according to the data and control networks' view of the machine. In 
general, important subsets of geographical addresses can be specified with one diagnostic virtual address. Important 
subsets of network addresses-for example, all data network chips at a given height in the machine, or all boards 
containing processing nodes in some contiguous range-typically take a combination of at most h diagnostic virtual 
addresses, where h is the number of bits in the address. The most important aspect of the addressing scheme, 
however, is that the time to access the various subsets does not grow by more than a small additive amount when 
the size of the machine doubles. 

Having addressed a subset of the pods in the system, scan vectors can be applied in parallel to detect errors. 
JTAG serial data and control inputs are broadcast to all selected pods. Each pod provides a scan output signal that 
can be OR'ed or AND'ed with the corresponding signals from the other selected pods. The choice of an OR or AND 
combiner depends on what the diagnostic processor is expecting for a scan result. Ifthe expected bit is a 1, the AND 
combiner is chosen. The result of the combining is a 1 if and only if all selected pods assert a 1. Similarly, if the 
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expected output is a 0, the OR combiner is chosen. The result of the combining is a 0 if and only if all selected pods 
assert a O. If an error is detected in a group of selected pods, the offending pod can be isolated either by addressing 
each pod in the group individually one at a time, or by a divide-and-conquer methodology. Within a pod, standard 
techniques for finding errors within a serial chain of JTAG interfaces are used to isolate the error to the chip level. 

Since the diagnostic network is a tree, it is relatively easy to make it self diagnosing. Each level beneath the root 
can be tested by the levels above. Moreover, since there is not much logic in the diagnostic network, the probability 
that the network fails itself is much less than the probability that other parts of the system fail. Moreover, since 
the network is a tree, most of its logic is near the leaves, so that when a part of the diagnostic network does fail, 
only a small part of the tree is likely to be isolated. We did not mind relying on relatively few components near the 
root, since any small set of components is quite reliable-it is only large aggregatei which have a high probability of 
failing. 

The current implementation of the diagnostic network uses essentially two off-the-shelf chips. The address decod­
ing of a binary node is implemented with a P22VlO 24-pin PAL, and the finite-state control of a node is implemented 
with a P18V8 20-pin PAL. The chips can be clocked at any speed up to about 1 megahertz. In some places in the 
system, to save chips, address decoding of a 4-ary or 8-ary node is implemented directly as a single-chip PAL, rather 
than by using several separate binary-node PAL's. 

7 Conclusion 

We conclude this paper with a brief history of our implementation effort. 
Work on the CM-5 architecture was begun in the latter part of 1987. We performed network simulations that 

led us, by January 1988, to choose a fat-tree architecture for the data network. By May 1988, most of the data' 
network logic had been designed and verified, although several changes were implemented during the summer of 
1988. A register-transfer-level (RTL) description of the data network chip was completed in early 1989, and the 
data network architecture was frozen. A gate-level description of the data network chip was completed by the early 
summer of 1989. The JTAG diagnostic interface was debugged using the data network chip design as a framework. 
The data network chip also served as the guinea pig for system and chip timing software. The chip was submitted 
for fabrication in May 1990. 

The MIMD-plus-control-network design was proposed in early 1988, but we did not officially decide to use it 
until May 1989. Until then, we maintained other potential design alternatives. Work on the control network chip 
and the network interface proceeded concurrently. By the end of summer 1989, RTL models of both were simulating 
successfully. Gate-level models were implemented by the end of December 1989, and the control network architecture 
and network interface were frozen shortly thereafter. In May 1990, both the control network chip and the interface 
chip were submitted for fabrication. 

The strategy of the diagnostic network was laid out in 1988, but work did not begin on it in earnest until the fall of 
1989. Most of the work involved implementing the JTAG interface on the various chips. The design of the diagnostic 
network itself took only a few months, but considerable effort in 1990 and 1991 went into diagnostic software. 

In the latter part of 1990, our attention turned to system integration. We received and tested the data network 
chips in July 1990, the control network chips in August, and the interface chips in September. Within two days 
after the interface chips arrived, we had assembled the networks for a 2-node machine and powered it up, a feat due 
in large measure to our functional verification methodology [18]. That same day, the operating system-which had 
been developed on a simulator-functioned correctly on the machine. By year's end, we had successfully constructed 
several small machines, including a 64-node machine, some of which were dedicated to software development. 

The year 1991 began with an effort to build a 256-node machine using a completely new mechanical design. 
Initially, it had been more important to make machines available to our software engineers than to construct a large 
machine. To test the limits of our physical design, however, we needed to build large machines. The 256-node machine 
was begun in February, and finished in March. The time frame was dominated by the build time in manufacturing. 
In May, we built a 544-Iiode machine, which was shipped in August to the Minnesota Supercomputer Center on 
behalf of the Army High Performance Computer Research Center. 

In October 1991, the Connection Machine Model CM-5 Supercomputer was publicly announced. 
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